Cho parabol (P): y = -x2 và đường thẳng (d): y = (2 - m).x + m - 3. Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn |x1| + x22 = 2
Tìm m để (d) cắt (P) tại 2 điểm có hoành độ x1 x2 thỏa mãn x12 = x2 - 4
biết (d) : y = 2mx - 2m +1 ; (P) : y = x2
Cho đường thẳng (d): y=mx-2m+4 và parabol (P): y=x^2. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1,x2 sao cho x1^2+x2^2 có giá trị nhỏ nhất.
bài 1 Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = 2(m-1)x + 3 và parabol (P): y = x2 3) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi m 4) Gọi x1, x2 là hoành độ các giao điểm của (d) và (P). Tìm m để |x1| + |x2| = 4
Bài 10: Trong mặt phẳng toạ độ Oxy cho parabol (P) : y = x2 và đường thẳng (d):y = mx +4. a) Chứng minh rằng với mọi giá trị của m, đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A( X1;y1) và B(x2;y2). b) Tìm tất cả các giá trị của m sao cho y mũ 2 1 + y mũ 2 2 = 7 mũ 2
em cần gấp ạ, cảm ơn ạ
Cho parabol (P): y=x2 và đường thằng (d): y=mx+2
tìm m để (d) cắt (P) tại 2 điểm có hoành độ x1, x2 sao cho x12=4x22
Cho p =2mx² d y=4x-2m²
Tìm m để p cắt d tại hai điểm pb có hoanh độ x1 x2 sao cho p=8/(x1+x2)+1/2(x1x2) đạt min
Cho phương trình x2 + 2(m - 1)x - 2m + 5 =0 ( m là tham số). Tìm giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn 2x1 + 3x2 = -5
Tìm tất cả các giá trị của tham số mm để phương trình x2−2mx+m2−m+1=0x2−2mx+m2−m+1=0 có hai nghiệm x1,x2 thỏa mãn x2^3−2x1^3+6mx1=19
Trong mặt phẳng tọa độ Oxy cho parabol (P):y=\(^{x^2}\) và đường thẳng (d) :y= 2(m+3)x-2m-5
a)
b) Tìm m để (P) cắt (d) tại 2 điểm pb có hoành độ x1,x2 thỏa mãn : \(\frac{1}{\sqrt{x1}}+\frac{1}{\sqrt{x2}}\)=\(\frac{4}{3}\)