Phương trình hoành độ giao điểm:
\(\frac{1}{2}x^2=-x+m\Leftrightarrow x^2+2x-2m=0\)
\(\Delta'=1+2m\ge0\Rightarrow m\ge-\frac{1}{2}\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-2m\end{matrix}\right.\)
\(x_1x_2+y_1y_2=5\Leftrightarrow x_1x_2+\frac{1}{4}\left(x_1x_2\right)^2=5\)
\(\Leftrightarrow\left(x_1x_2\right)^2+4x_1x_2-5=0\Rightarrow\left[{}\begin{matrix}x_1x_2=1\\x_1x_2=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2m=1\\-2m=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{1}{2}\\m=\frac{5}{2}\end{matrix}\right.\)