Lời giải:
a)
Khi $m=2$ phương trình trở thành:
\(x^2-2.2x+2^2-1=0\)
\(\Leftrightarrow x^2-4x+3=0\Leftrightarrow (x-1)(x-3)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\)
b)
Để pt có hai nghiệm phân biệt thì:
\(\Delta'=m^2-(m^2-1)>0\Leftrightarrow 1>0\) (luôn đúng với mọi số thực $m$)
Khi đó áp dụng hệ thức Viete có: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-1\end{matrix}\right.\)
Do đó: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{2}\)
\(\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{2}\Leftrightarrow \frac{2m}{m^2-1}=\frac{1}{2}\)
\(\Rightarrow m^2-1=4m\Leftrightarrow m^2-4m-1=0\)
\(\Leftrightarrow (m-2)^2=5\Rightarrow \left[\begin{matrix} m=2+\sqrt{5}\\ m=2-\sqrt{5}\end{matrix}\right.\) (đều chọn)
a) đơn giản (bước đệm làm b thôi
b) m thỏa mãn đồng thời hệ \(\left\{{}\begin{matrix}f\left(0\right)\ne0\\\Delta>0\\\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\)
\(\left(1\right)\Leftrightarrow0-0+m^2-1\ne0\Leftrightarrow m\ne\left\{\pm1\right\}\)
\(\left(2\right)\Leftrightarrow\Delta'_{\left(x\right)}=m^2-m^2+4=4>0\forall m\Rightarrow m\in R\backslash\left\{\pm1\right\}\)
\(\left(3\right)\Leftrightarrow\dfrac{x_2+x_1}{x_1.x_2}=\dfrac{1}{2}\)
với đk m<=> \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m^2-1\\2\left(x_1+x_2\right)=x_1.x_2\end{matrix}\right.\)\(\Leftrightarrow m^2-4m-1=0\)
\(\Delta'_{\left(m\right)}=2^2+1=5\Rightarrow m=2\pm\sqrt{5}\) thỏa mãn đk m nhận