\(P=\left(\dfrac{1}{ax-2}+\dfrac{1}{ax+2}+\dfrac{2ax}{a^2x^2+4}+\dfrac{4a^3x^3}{a^2x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\left(\dfrac{ax+2+ax-2}{a^2x^2-4}+\dfrac{2ax}{a^2x^2+4}+\dfrac{4a^3x^3}{a^4x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\left(\dfrac{2ax\left(a^2x^2+4\right)+2ax\left(a^2x^2-4\right)}{a^4x^4-16}+\dfrac{4a^3x^3}{a^4x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\left(\dfrac{4a^3x^3}{a^4x^4-16}+\dfrac{4a^3x^3}{a^4x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\dfrac{8a^7x^7-64a^3x^3}{a^4x^4\left(a^4x^4-16\right)}\cdot\dfrac{a^4x^4+16}{a^4x^4}=\dfrac{\left(8a^7x^7-64a^3x^3\right)\left(a^4x^4+16\right)}{a^8x^8\left(a^4x^4-16\right)}\)
\(=\dfrac{8a^3x^3\left(a^4x^4-8\right)\left(a^4x^4+16\right)}{a^8x^8\left(a^4x^4-16\right)}=\dfrac{8\left(a^4x^4-8\right)\left(a^4x^4+16\right)}{a^5x^5\left(a^4x^4-16\right)}\)