ho phương trình : x^2 - (m+1)x + m = 0
Tìm m để phương trình có hai nghiệm trái dấu và nghiệm dương có giá trị tuyệt đối lớn hơn
Cho phương trình x2+mx+2m-4=0 a Chứng tỏ phương trình trên luôn có nghiệm với mọi giá trị m b Tính tổng và tích của 2 nghiệm theo m c Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn x1^2+x2^2=4
Cho phương trình x2 - 6x + m = 0.
1) Với giá trị nào của m thì phương trình có 2 nghiệm trái dấu.
2) Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn điều kiện x1 - x2 = 4
Cho phương trình ẩn x: x2 – 2mx + 4 = 0 (1)
a) Giải phương trình đã cho khi m = 3.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: ( x1 + 1 )2 + ( x2 + 1 )2 = 2.
cho phương trình : x^2 - mx + m - 1 = 0
Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 4
Cho phương trình ẩn x: x2 – x + 1 + m = 0 (1)
a) Giải phương trình đã cho với m = 0.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.( x1x2 – 2 ) = 3( x1 + x2 ).
Cho phương trình: -(m+4)x + 3m +3=0 (x là ẩn số) a) Chứng minh phương trình đã cho luôn có nghiệm với mọi gia trị của m b) Tính tổng và tích hai nghiệm của phương trình c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn: - x1 = x2 - + 8
Cho PT: \(x^2+2x+m-1=0\). Tìm m để PT có 2 nghiệm trái dấu. Khi đó nghiệm nào có giá trị tuyệt đối lớn hơn?
Cho phương trình: x2- 4x + m +1 = 0 (1)
1) Giải phương trình (1) khi m = 2.
2) Tìm giá trị của m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn đẳng thức \(x_1^2+x_2^2\)= 5 (x1 + x2)