Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dũng Nguyễn tiến

cho phương trình x2-<m+5>x+3m+6 

a, chứng minh phương trình luôn có 2 nghiệm với mọi m 

b, tìm m để 2 nghiệm x1 x2 là độ dài 2 cạnh góc vuông của tam giác biết cạnh huyền bằng 5

 

Nguyễn Việt Lâm
6 tháng 6 2021 lúc 15:34

Đề là \(x^2-\left(m+5\right)x+3m+6=0\) đúng không nhỉ?

a. Ta có:

\(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m-1\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)

Để \(x_1;x_2\) là độ dài 2 cạnh góc vuông thì trước hết \(x_1;x_2\) dương

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m+5>0\\3m+6>0\end{matrix}\right.\) \(\Rightarrow m>-2\)

Khi đó áp dụng định lý Pitago:

\(x_1^2+x_2^2=25\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\)

\(\Leftrightarrow m^2+6m-12=0\Rightarrow\left[{}\begin{matrix}m=-3-\sqrt{21}< -2\left(loại\right)\\m=-3+\sqrt{21}\end{matrix}\right.\)


Các câu hỏi tương tự
Linh Bùi
Xem chi tiết
nguyễn văn quốc
Xem chi tiết
Xxyukitsune _the_moonwol...
Xem chi tiết
Limited Edition
Xem chi tiết
nguyễn văn quốc
Xem chi tiết
Phan Trần Hạ Vy
Xem chi tiết
Beerus - Slutte
Xem chi tiết
Anhquan Hosy
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết