Cho phương trình \(x^2-\left(m-2\right)x-8=0\), với m là tham số.
Tìm tất cả các giá trị của m để phương trình có hai nghiệm \(x_1,x_2\) sao cho biểu thức \(Q=\left(x^2_1-1\right)\left(x^2_2-4\right)\) có giá trị lớn nhất.
Cho phương trình \(x^2-2\left(m-1\right)x+2m-3=0\left(1\right)\)
a) Chứng minh \(\left(1\right)\) luôn có nghiệm với mọi m.
b) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm trái dấu.
c) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm sao cho nghiệm này gấp đôi nghiệm kia.
Cho phương trình \(x^2-2\left(m+4\right)x+m^2-8=0\)
Tìm m để phương trình thỏa mãn \(x_1,x_2\) thỏa mãn:
\(A=x^2_1+x^2_2-x_1-x_2\) đạt giá trị nhỏ nhất.
\(B=x^2_1+x^2_2-x_1x_2\) đạt giá trị nhỏ nhất.
Cho phương trình : \(x^2-\left(m+2\right)x-m-3=0\) (1)
a, Giải phương trình khi m = -1
b, Tìm giá trị của m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2>1\)
Cho phương trình \(7x^2+2\left(m-1\right)x-m^2=0.\)
a) Với giá trị nào của m thì phương trình có nghiệm?
b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-et, hãy tính tổng các bình phương hai nghiệm của phương trình đã cho theo m.
Cho phương trình x2 -2.(m-1) x+2m - 5 = 0 (1) với m là tham số.
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2
b) Tìm các giá trị của m để ( x12 - 2mx1 +2m - 1) (x2 -2 ) \(\le\) 0
cho phương trình bậc hai x2-2(m-1)x+2m-5=0 (1)
với giá trị nào của m thì phương trình có hai nghiệm x1,x2 thỏa mãn:
x1<2<x2
Tìm m để phương trình \(x^2-2\left(m-1\right)x+2m-3=0\) có 2 nghiệm x1 , x2 sao cho \(A=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\) đạt giá trị lớn nhất
Cho \(x^2-mx+m^5-5=0\) . Với \(x_0\) là nghiệm của phương trình trên
Tìm GTNN và GTLN của \(x_0\)