Lời giải:
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=-2\end{matrix}\right.\)
\(Q=x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=3^2-2(-2)=13\)
Lời giải:
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=-2\end{matrix}\right.\)
\(Q=x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=3^2-2(-2)=13\)
Cho phương trình x2 + 5x − 4 = 0 . Gọi x1 ; x2 là hai nghiệm của phương trình. Không giải phương trinh, hăy tính giá trị biểu thức
Q = x12 + x22 + 6x1 x 2.
Cho phương trình 5x2 - 2x - 7 = 0. a) Không giải phương trình, tính tổng và tích hai nghiệm. b) Tính giá trị của biểu thức A = x12 + x22 – x1. x2
cho phương trình: x^2-(2m+3)x+m=0. Gọi x1,x2 là 2 nghiệm của phương trình đã cho. Tìm giá trị của m để biểu thức x1^2+x2^2 có giá trị nhỏ nhất
\(2x^2+2mx+m^2-2=0\)
Tìm m để phương trình có 2 nghiệm x1,x2. Thỏa mãn
CHo pt x-4x-3=0 có 2 nghiệm phân biệt x1,x2 không giải phương trình hãy tính giá trị của biểu thức A=\(\dfrac{x1^2}{x2}+\dfrac{x2^2}{x1}\)
Cho phương trình bậc hai, ẩn số là x : x2 – 3x + k – 1 = 0.
Tìm giá trị của k sao cho phương trình đã cho có hai nghiệm x1, x2 thoả mãn điều kiện
x12 – x22 = 15.
Cho phương trình X2 -m -2X+2m-8=0 ( m là tham số)
a) C/m phương trình luôn có nghiệm với mọi giá trị của m
b) Tính S và P theo m
c) Tìm m để phương trình có 2 nghiệm X1;X2 thỏa X12+X22-X1-X2=14
c3
cho PT ẩn x: x2-2(m-1)x-m-3=0 (1)
a/ giải phương trifnhd đã cho khi m =-3
b/ tìm giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho x12 + x22 =10
c/ tìm hệ thức liên hệ giữa các nghiệ ko phụ thuộc vfo giá trị của m
Cho phương trình : x2-4x+m=0(m là tham số)
a) Tính các giá trị của m để phương trình có các nghiệm x1,x2 thỏa mãn x1< x2 và x22-x12=18