Đề phương trình có nghiệm
=> \(\Delta'=\left(m-1\right)^2+m+3=m^2-m+4>0\forall m\)
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1\cdot x_2=-m-3\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow\left[2\left(m-1\right)\right]^2+2\left(m+3\right)=10\)
\(\Leftrightarrow4\left(m^2-2m+1\right)+2\left(m+3\right)=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6=10\)
\(\Leftrightarrow4m^2-6m=0\)
\(\Leftrightarrow m\left(4m-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\) (TM)