a. \(ĐKXĐ\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b. \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{x-4}\)
\(=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
c. \(P=2\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Vậy x = 16