Tìm tham số m để phương trình sau có đúng 2 nghiệm phân biệt: \(x^3-\left(1+m\right)x^2+\left(m-1\right)x+2m-2=0\)
Cho phương trình \(\left(m+3\right)x^2+3\left(m+2\right)x+\left(m+2\right)\left(m+4\right)=0\)(m là tham số) Giá trị của m để phương trình có nghiệm là...
Cho phương trình \(\left(m+3\right)x^2+3\left(m+2\right)x+\left(m+2\right)\left(m+4\right)=0\)(m là tham số). Giá trị của m để phương trình có nghiệm là...
cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)
tìm m để phương trình \(x^2+\left(2-m\right)x+m-3=0\) có hai nghiệm phân biệt thỏa mãn \(\left|x_1\right|+x_2^2=2\)
Cho hệ phương trình :\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\) (m là tham số)
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y < 0
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=m^2+3\\x-y=-4\end{matrix}\right.\)(m là tham số). CMR: Với mọi \(m\ne-1\), hệ phương trình có nghiệm duy nhất (x;y). Khi đó tìm giá trị nhỏ nhất của biểu thức: \(Q=x^2-2y+10\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\left(I\right)\) (m là tham số) .
a) Giải hệ phương trình (I) khi m=1.
b) Tìm m để hệ (I) có nghiệm duy nhất (x,y) thỏa mãn x+y=-3.