Đặt \(x^2=t\ge0\) pt trở thành:
\(\left(m+2\right)t^2-2\left(m-1\right)t+4=0\) (1)
Để pt có 4 nghiệm \(\Leftrightarrow\) (1) có 2 nghiệm không âm
\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ne0\\\Delta'=\left(m-1\right)^2-4\left(m+2\right)\ge0\\x_1+x_2=\frac{m-1}{m+2}\ge0\\x_1x_2=\frac{4}{m+2}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m^2-6m-7\ge0\\\frac{m-1}{m+2}\ge0\\m+2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge7\\m\le-1\end{matrix}\right.\\\left[{}\begin{matrix}m\ge1\\m< -2\end{matrix}\right.\\m>-2\end{matrix}\right.\) \(\Rightarrow m\ge7\)