ta có Vi-ét:
x1 + x2 = 6
x1. x2 = m
lại có : x13 + x23 = 72
⇔(x1 + x2).(x12 - x1 . x2+ x22) = 72
⇔(x1 + x2).(x12 + 2.x1.x2 - 3. x1.x2+ x22) = 72
⇔(x1 + x2).[(x1 + x2)2 -3x1.x2]= 72____________(*)
thay từ ct vi-ét vào (*) ta có:
6.(62-3m)=72
⇔m=8
\(Δ=(-6)^2-4.1.m=36-4m\ge 0\\\leftrightarrow 4m\le 36\\\leftrightarrow m\le 9\)
Theo Viét
\(\begin{cases}x_1+x_2=6\\x_1x_2=m\end{cases}\)
\(x_1^3+x_2^3\\=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)\\=(x_1+x_2)[(x_1^2+2x_1x_2+x_2^2)-3x_1x_2]\\=(x_1+x_2)[(x_1+x_2)^2-3x_1x_2]\)
\(\to 6(6^2-3m)=72\\\leftrightarrow 36-3m=12\\\leftrightarrow 3m=24\\\leftrightarrow m=8(TM)\)
Vậy \(m=8\) thỏa mãn đề bài