a/ thay m=3 vào (1) ta có:
\(\left(1\right)\Leftrightarrow x^2-6x+4=0\)
\(\Leftrightarrow\left(x-3\right)^2=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=3-\sqrt{5}\end{matrix}\right.\)
vậy \(x=\sqrt{5}+3\) hoặc \(x=3-\sqrt{5}\) khi m=3
b/ ta có:
\(\Delta'=b'^2-ac\)
=\(m^2-4\) để phương trình có nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow m^2\ge4\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
theo hhệ thức vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1.x_2=4\left(2\right)\end{matrix}\right.\)
theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow x_1^2+2x_1+x_2^2+2x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+2\left(x_1+x_2\right)-2x_1.x_2=0\) (3)
từ (1) ; (2) và (3) ta có:
\(4m^2+2.2m-2.4=0\)
\(\Leftrightarrow\left(2m+1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+1=3\\2m+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
vậy m=-2