Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chuyên hỏi bài

Cho phương trình ẩn: x2 -2mx +4 = 0 (1)

a) Giải phương trình đã cho khi m = 3

b) Tìm giá trị của m để phương trình (1) có nghiệm x1 , x2 thỏa mãn (x1+1)2 + (x2+1)2 = 2

Dạ ai giúp em với ạ, e cần gấp, em cám ơn nhiều!!!

Phạm Lan Hương
14 tháng 2 2020 lúc 23:48

a/ thay m=3 vào (1) ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=3-\sqrt{5}\end{matrix}\right.\)

vậy \(x=\sqrt{5}+3\) hoặc \(x=3-\sqrt{5}\) khi m=3

b/ ta có:

\(\Delta'=b'^2-ac\)

=\(m^2-4\) để phương trình có nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow m^2\ge4\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

theo hhệ thức vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1.x_2=4\left(2\right)\end{matrix}\right.\)

theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+2x_1+x_2^2+2x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+2\left(x_1+x_2\right)-2x_1.x_2=0\) (3)

từ (1) ; (2) và (3) ta có:

\(4m^2+2.2m-2.4=0\)

\(\Leftrightarrow\left(2m+1\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+1=3\\2m+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

vậy m=-2

Khách vãng lai đã xóa

Các câu hỏi tương tự
Limited Edition
Xem chi tiết
Le Gia Han
Xem chi tiết
Kim Chi
Xem chi tiết
Hương Giang
Xem chi tiết
Nguyen Duy
Xem chi tiết
Loan Nguyễn
Xem chi tiết
Võ Trường Sơn
Xem chi tiết
Phan Trần Hạ Vy
Xem chi tiết
ngocha_pham
Xem chi tiết
nguyễn văn quốc
Xem chi tiết