a: Thay m=3 vào phương trình, ta được:
\(x^2+3x+3-1=0\)
=>\(x^2+3x+2=0\)
=>(x+2)(x+1)=0
=>\(\left[\begin{array}{l}x+2=0\\ x+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-2\\ x=-1\end{array}\right.\)
b: \(\Delta=3^2-4\cdot1\cdot\left(m-1\right)=9-4m+4=-4m+13\)
Để phương trình có hai nghiệm thì Δ>=0
=>-4m+13>=0
=>-4m>=-13
=>\(m\le\frac{13}{4}\)
Theo Vi-et, ta có: \(x_1+x_2=-\frac{b}{a}=-3;x_1x_2=\frac{c}{a}=m-1\)
\(x_1\left(x_1^4-1\right)+x_2\left(32x_2^4-x_2\right)=3\)
=>\(x_1^5+32\cdot x_2^5-\left(x_1+x_2\right)=3\)
=>\(x_1^5+32\cdot x_2^5-\left(-3\right)=3\)
=>\(x_1^5=-32x_2^5\)
=>\(x_1=-2x_2\)
\(x_1+x_2=-3\)
=>\(-2x_2+x_2=-3\)
=>\(-x_2=-3\)
=>\(x_2=3\)
\(x_1=-2\cdot3=-6\)
\(x_1x_2=m-1\)
=>m-1=-18
=>m=-17(nhận)