Lời giải:
Nếu PT đã cho có 2 nghiệm phân biệt $x_1,x_2$ thì theo định lý Vi-et ta có:
\(\left\{\begin{matrix} x_1+x_2=\frac{-b}{a}\\ x_1x_2=\frac{c}{a}\end{matrix}\right.\). Thay \(x_1=x_2^2\) ta có:
\(\left\{\begin{matrix} x_2^2+x_2=\frac{-b}{a}\\ x_2^3=\frac{c}{a}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_2^2+x_2=\frac{-b}{a}\\ x_2=\sqrt[3]{\frac{c}{a}}\end{matrix}\right.\)
\(\Rightarrow \sqrt[3]{\frac{c^2}{a^2}}+\sqrt[3]{\frac{c}{a}}=\frac{-b}{a}\)
\(\Rightarrow \sqrt[3]{c^2a}+\sqrt[3]{ca^2}=-b\). Đặt \(\sqrt[3]{c^2a}=m; \sqrt[3]{ca^2}=n; b=p\)
Khi đó: \(m+n=-p\)
Suy ra:
\(b^3+a^2c+ac^2=p^3+n^3+m^3=p^3+(n+m)^3-3nm(n+m)\)
\(=p^3+(-p)^3-3nm(-p)=3nmp=3\sqrt[3]{ca^2}.\sqrt[3]{c^2a}.b=3abc\) .
Ta có đpcm.