Cho parabol \(\left(P\right):\) \(y=3x^2-x-4\). Gọi \(A,B\) là giao điểm của \(\left(P\right)\) với \(Ox\). Tìm \(m< 0\) sao cho đường thẳng \(d:\)\(y=m\) cắt \(\left(P\right)\) tại 2 điểm phân biệt \(M,N\) mà 4 điểm \(A,B,M,N\) tạo thành tứ giác có diện tích bằng 4.
Giúp mk vs
Tìm tất cả các giá trị của tham số m để đường thẳng y =2x-3 cắt parabol y = x^2+ (m+2)x + m tại 2 điểm phân biệt nằm cùng phía với trục tung
Lập phương trình đường thẳng đi qua điểm M(5;-3) và cắt hai trục toạ độ tại 2 điểm A và B sao cho M là trung điểm của AB
Trong hệ tọa độ Oxy cho tam giác ABC cân tại A, M (-1; 1) và N (-1; -7) lần lượt thuộc các cạnh AB và tia đối của CA sao cho BM = CN. Biết rằng đường thẳng BC đi qua điểm E (-3; -1) và điểm B thuộc đường thẳng x + 4 = 0. Tìm tung độ điểm A
cho đường thẳng d : 3x-y+5=0 và đường tròn (c) : (x-1) ² +(y-3) ² =25
1/ Viết ptđt d' đi qua A (1;-3) và tiếp xúc với (c)
2/ Tìm tọa độ điểm H là hình chiếu vuông góc của I lên d
3/ Viết ptđt đi qua điểm B(5;6) và cắt (c) tại 2 điểm M,N sao cho MN = √5
Câu 1
1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\)
2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)
Câu 2:
1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm có hoành độ không âm x1, x2. Tính theo m giá trị của biểu thức \(P=\sqrt{x_1}+\sqrt{x_2}\) và tìm giá trị nhỏ nhất của P.
2. Giải bất phương trình: \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)
Câu 3:
1. Cho hàm số \(y=f\left(x\right)=mx^2-2\left(m-1\right)x+m-2\). Tìm m để trên đồ thị của \(f\left(x\right)\)có 2 điểm \(A\left(x_A;y_A\right),B\left(x_B,y_B\right)\)thỏa mãn: \(2x_A-y_A-3=0,2x_B-y_B-3=0\) và \(AB=\sqrt{5}\)
2. Giải phương trình: \(x\sqrt{x}-1=\left(\sqrt{x}-1\right).\sqrt{2x^2-3x+2}\)
Câu 4:
1. Cho parabol (P): \(y=x^2-\left(m-1\right)x+\left(2m^2-8m+6\right)\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ \(x_1,x_2\). Tìm GTLN và GTNN của biểu thức \(P=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)
2. Giải bất phương trình: \(\left(2x-5-\sqrt{x^2-x-25}\right)\sqrt{x^2-5x+6}\le0\)
Câu 5:
1. Cho parabol (P): \(y=-x^2\) và đường thẳng d đi qua điểm I (0; -1). và có hệ số góc là k. Gọi A và B là các giao điểm của (P) và d. Giả sử A, B lần lượt có hoành độ là \(x_1,x_2\)
a. Tìm k để trung điểm của đoạn AB nằm trên trục tung.
b. Tìm GTNN của biểu thức: \(P=\left|x^3_1-x^3_2\right|\)
2. Giải phương trình: \(1+\left(6x+2\right)\sqrt{2x^2-1}=2\left(5x^2+4x\right)\)
a) Cho parabol (P): y = x2 và đường thẳng (d): y = -mx-1. Tìm m thuộc Z để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 sao cho \(A=\dfrac{\left(x_1-x_2\right)2}{x_1+x_2+1}\) đạt giá trị nguyên.
b) Gọi A(3;9); B(-1;1) là 2 điểm trên (P) và M là điểm trên cung AB thuộc (P) (phần bị chắn bởi dây AB). Xác định tọa độ M trên cung AB sao cho diên tích tam giác MAB lớn nhất.
cho 3 số thực a,b,c với a khác 0 sao cho ax^2+bx+c>=0.tìm giá trị nhỏ nhất của p=(2/b^2-2b+2) +a^2+c^2-b+1
Trong mặt phẳng tọa độ (Oxy) , cho điểm A (2;1), B(-1;0). Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A