pthdgd
x^2-2(m-1)x+m^2-3m=0
∆(x)=m^2-2m+1-m^2+3m=m+1
∆(x)≥0; m≥-1
s>0=>m>1
P>0; m<0; m>3
dkm : m >3
x1.x2=S=7/4
m^2-3m=7/4
4m^2-12m-7=0
∆=36+28=4(9+7)=64
m1=(6-8)/4(l)
m2=(6+8)/4=7/2(n)
pthdgd
x^2-2(m-1)x+m^2-3m=0
∆(x)=m^2-2m+1-m^2+3m=m+1
∆(x)≥0; m≥-1
s>0=>m>1
P>0; m<0; m>3
dkm : m >3
x1.x2=S=7/4
m^2-3m=7/4
4m^2-12m-7=0
∆=36+28=4(9+7)=64
m1=(6-8)/4(l)
m2=(6+8)/4=7/2(n)
Trong mặt phẳng tọa độ Oxy, cho Parabol(P): y=x2 và đường thẳng (d): y=2(m+1)x-m2-4 (1), (m là tham số)
a) Tìm m để đường thẳng (d) đi qua A(0;-5)
b) Với giá trị nào của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1; x2 thỏa mãn điều kiện: (2x1-1)(x22-2mx2+m2+3)=21
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x ^ 2 và đường thẳng (d) có phương trình (d) v = 2x + m ^ 2 - 2m (với m là tham số)
Xác định tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ lần lượt là x1, và x2, thỏa mãn điều kiện x1 ^ 2 + 2x2 = 3m
Bài 3 cho parabol (P)\(y=x^2\) và đt (d) y =(2-m)x +m-3
a,CM : (d) và (P) luôn có điểm chung
b, Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) sao cho \(\left|x_1\right|+x^2_2=2\)
Trong mặt phẳng tọa độ Oxy, cho (P):y= \(-\dfrac{1}{4}x^{2}\) Gọi M là điểm thuộc (P) có hoành độ x=2. Lập pt đường thẳng đi qua điểm M đồng thời cắt trục hoành và trục tung lần lượt tại 2 điểm phân biệt A và B sao cho \(S_{OMA}=2S_{OMB}\)
Bài 1 cho parabol (P) \(y=x^2\) và đ/t (d) \(y=-mx+2\)
Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) sao cho\(x_1^2x_2+x_1x_2^2=2020\)
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y=x2 và đường thẳng (d): y=2(m-1)x+5-2m (m là tham số)
a) Vẽ đồ thị parabol (P).
b) Biết đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1, x2. Tìm m để x+x=6
Bài 1 Cho parabol (P) và đt (d) y= -2x +1 -m
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -2
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2=x_1.x_2+8\)
Bài 2 Cho parabol (P) \(y=x^2\) và đt (d) \(y=2\left(m+1\right)x-m+4\)
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -5
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ\(x_1,x_2\) sao cho \(A=|x_1-x_2|\) đạt GTNN và tìm GTNN đó
Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m + 1)x - 4
a) Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt
b) Gọi A (x1;y1) và B (x2;y2) là hai giaoo điểm của đường thẳng (d) với parabol (P). Tìm m để \(\sqrt{x_1}-\sqrt{x_2}=2\)