Cho đường tròn (O) và dây cung BC cố định không qua tâm. Trên cung
lớn BC lấy điểm A sao cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt
nhau tại H và cắt đường tròn (O) lần lượt tại M, N , P.
a) Chứng minh rằng: Tứ giác AFHE nội tiếp.
b) Chứng minh rằng: AO vuông góc với NP.
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (o).Các đường cao AD,BE và CF của tam giác ABC cắt nhau tại H
a,chứng minh BCEF và CDHE là các tứ giác nội tiếp
b,chứng minh EB là tia phân giác của góc FED và tam giác BFE đồng dạng với tam giác DHE
Câu 4. (2,0 điểm) Cho đường tròn (0; 2, 5cm) có dây BC = 3c cố định. Trên cung lớn BC lấy điểm A bất kì sao cho tam giác ABC nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H (D in AC E AB). 1) Chứng minh tứ giác BEDC là tứ giác nội tiếp. 2) Kẻ đường kinh AK của đường tròn (O; R) Chứng minh: góc EDB = góc CBK . 3) Tính bán kính đường tròn ngoại tiếp tam giác DEH.
Cho tam giác ABC nội tiếp đường tròn tâm o. có 3 đường cao AD, BE, CF cắt nhau tại H. a)Chứng minh: BDHF và BFEC là tứ giác nội tiếp b) EF cắt BC tại G. Chứng minh: FC là phân giác góc EFD và BD.CG=BG.CD d) M,N là hình chiếu của H lên DF và EF, giao điểm MN và AH là I, EI và DF cắt nhau tại K. CM I là trung điểm của
Bài 2: Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R ). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.Gọi S là diện tích tam giác ABC. a) Chứng minh các tử giác AEHF và AEDB nội tiếp được. b) Chứng minh AB. BC. AC=4RS c) Chứng minh OC vuông góc với DE và ( DE+EF+FD). R = 2S
cho tam giác ABC nội tiếp đường tròn tâm O có AD,CF,BE là đường cao giao nhau tại H có M là trung diểm của BC
cm tứ giác BFEC nội tiếptứ giác DFEM nội tiếpCho tam giác ABC có ba góc nhọn nội tiếp (O;R). Hai đường cao AN và BM của tam giác ABC cắt nhau tại I a) Chứng minh tứ giác IMCN nội tiêpa một đường tròn b) Chứng minh: IA.IN=IB.IM c) Tia BM cắt (O) tại H. Chứng minh AI = AH
cho tam giác abc nhọn nối tiếp đường tròn o đường cao BD , CE cắt nhau tại H . AH cắt đường tròn tâm O tại K cắt BC tại M
a, cm Tứ giác BEDC nội tiếp
b, cm AE.AB=AD.AC và DH là phân giác góc EDM
c, KD cắt ( O ) tại Q . cm tam giác HMD ~ tam giac EBD , BQ đi qua trung điểm của DE