Cho tam giác ABC nội tiếp đường tròn tâm o. có 3 đường cao AD, BE, CF cắt nhau tại H. a)Chứng minh: BDHF và BFEC là tứ giác nội tiếp b) EF cắt BC tại G. Chứng minh: FC là phân giác góc EFD và BD.CG=BG.CD d) M,N là hình chiếu của H lên DF và EF, giao điểm MN và AH là I, EI và DF cắt nhau tại K. CM I là trung điểm của
a: Xét tứ giác BDHF có \(\hat{BDH}+\hat{BFH}=90^0+90^0=180^0\)
nên BDHF là tứ giác nội tiếp
Xét tứ giác BFEC có \(\hat{BFC}=\hat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
b: Ta có: BFHD nội tiếp
=>\(\hat{HFD}=\hat{HBD}\)
=>\(\hat{DFC}=\hat{EBC}\) (1)
Ta có: BFEC nội tiếp
=>\(\hat{EBC}=\hat{EFC}\) (2)
Từ (1),(2) suy ra \(\hat{DFC}=\hat{EFC}\)
=>FC là phân giác của góc EFD