a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
Bài 2: Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R ). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.Gọi S là diện tích tam giác ABC. a) Chứng minh các tử giác AEHF và AEDB nội tiếp được. b) Chứng minh AB. BC. AC=4RS c) Chứng minh OC vuông góc với DE và ( DE+EF+FD). R = 2S
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R). Hai đường cao AN và BM của tam giác ABC cắt nhau tại I a) Chứng minh tứ giác IMCN nội tiêpa một đường tròn b) Chứng minh: IA.IN=IB.IM c) Tia BM cắt (O) tại H. Chứng minh AI = AH
Cho tam giác ABC nội tiếp đường tròn tâm o. có 3 đường cao AD, BE, CF cắt nhau tại H. a)Chứng minh: BDHF và BFEC là tứ giác nội tiếp b) EF cắt BC tại G. Chứng minh: FC là phân giác góc EFD và BD.CG=BG.CD d) M,N là hình chiếu của H lên DF và EF, giao điểm MN và AH là I, EI và DF cắt nhau tại K. CM I là trung điểm của
Cho tam giác ABC nhọn, nội tiếp đường tròn (O), Các đường cao BE,CF cắt nhau tại H
a)Chứng minh AKHN nội tiếp đường tròn và xác định tâm của đường tròn ngoại tiếp tứ giác đó.
b)AK.NB=AN.KC.
c)Chứng Minh BKNC nội tiếp.Xác định tâm của đường tròn ngoại tiếp tứ giác đó.
d)Chứng minh AH⊥BC.
f)Đường thẳng BE , CF cắt đường tròn tại P , Q. Chứng minh cung AP = cung AQ
cho tam giác nhọn abc nội tiếp đường tròn (o).các đường cao ad,be,cf cắt nhau tại h.ad kéo dài cắt nhau tại điểm k(k khác a).đường thẳng ef cắt (o) tại m và n(f nằm giữa e và m). a,chứng minh d là trung điểm của hk. b,chứng minh oa vuông góc với mn. c,chứng minh am là tiếp tuyến của đường tròn ngoại tiếp tam giác mdh.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Dường cao BE; CF cắt nhau tại H
a) Vẽ hình
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;F;E;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn ngoại tiếp
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam ABC có ba góc nhọn nội tiếp đường tròn tâm (O). Vẽ hai đường cao BE và CF. a) Chứng minh tứ giác BFEC nội tiếp đường tròn. b) Chứng minh AFE = ACB. c) Chứng minh AO_|_ EF