\(MD\cdot ME=MA^2\left(\text{Δ}MAD\sim\text{Δ}MEA\right)\)
\(MH\cdot MO=MA^2\)
Do đó: \(MD\cdot ME=MH\cdot MO\)
\(MD\cdot ME=MA^2\left(\text{Δ}MAD\sim\text{Δ}MEA\right)\)
\(MH\cdot MO=MA^2\)
Do đó: \(MD\cdot ME=MH\cdot MO\)
Cho (O),M là một điểm nằm ngoài (O).Vẽ tiếp tuyến MA,MB và cát tuyến MDE không qua O.Gọi H là giao điểm MO và AB.Chứng minh rằng MD.ME = MH.MO
Cho (O),M là một điểm nằm ngoài (O).Vẽ tiếp tuyến MA,MB và cát tuyến MDE không qua O.Gọi H là giao điểm MO và AB.Chứng minh rằng MD.ME = MH.MO
Cho (O),M là 1 điểm nằm ngoài (O).Vẽ tiếp tuyến MN và cát tuyến MBC.
a.Chứng minh rằng MN^2 = MB . MC
b.Vẽ cát tuyến MDE.Chứng minh rằng MB.MC = MD.ME
Cho (O),M là 1 điểm nằm ngoài (O).Vẽ tiếp tuyến MN và cát tuyến MBC.
a.Chứng minh rằng MN^2 = MB . MC
b.Vẽ cát tuyến MDE.Chứng minh rằng MB.MC = MD.ME
Cho (O),M là 1 điểm nằm ngoài (O).Vẽ tiếp tuyến MN và cát tuyến MBC.
a.Chứng minh rằng MN^2 = MB . MC
b.Vẽ cát tuyến MDE.Chứng minh rằng MB.MC = MD.ME
cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp
B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))
cho M nằm ngoài (O) từ M kẻ 2 tiếp tuyến MA,MB với đường tròn, vẽ cát tuyến MCD không đi qua tâm
a)chứng minh các điểm M,A,O,B cùng thuộc một đường tròn và MO vuông góc với AB tại H
b) chứng minh MA.AD=MD.AC
c) gọi I là trung điểm của CD và E là giao điểm của AB và OI. chứng minh rằng: tứ giác OECH nội tiếp
Bài 13 Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thắng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng: a) Tứ giác MAOB là tứ giác nội tiếp và MC.MD = OM^2 - R^2 b) Bốn điểm O, H, C, D thuộc một đường tròn.
Cho điểm M nằm ngoài đường tròn (O). Vẽ tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D), OM cắt AB và (O) lần lượt tại H và I. Chứng minh:
1) Tứ giác MAOB nội tiếp
2)\(MA^2=MC.MD\)
3) OH.OM + MC.MD =\(MO^2\)
4)CI là phân giác của góc MCH