AM=MB và OA=OB nên OM là trung trực AB tại H
Lại có ADOE nội tiếp nên \(\widehat{AEM}=\widehat{AED}=\widehat{AOD}\left(\text{cùng chắn }\stackrel\frown{AD}\right)\)
\(\widehat{ADO}=90^0\left(\text{góc nt chắn nửa đg tròn}\right)\Rightarrow\widehat{AOD}+\widehat{OAD}=90^0\\ \text{Mà }\widehat{OAD}+\widehat{ADM}=90^0=\widehat{OAM}\\ \Rightarrow\widehat{AOD}=\widehat{ADM}\\ \Rightarrow\widehat{ADM}=\widehat{AEM}\\ \Rightarrow\Delta MAD\sim\Delta MEA\left(g.g\right)\\ \Rightarrow\dfrac{MA}{ME}=\dfrac{MD}{MA}\Rightarrow MA^2=MD\cdot ME\)
Mà theo HTL ta có \(MH\cdot MO=MA^2\)
Vậy ta có đpcm