Cho (O; R), đường kính AB, dây cung AC. Các tiếp tuyến với đường tròn tại B và C cắt nhau ở D. Biết \(\widehat{ABC}=30^o\), R=2cm
a) Chứng minh: DO // AC
b) Tính độ dài BD, CD
Cho(O:R) và dây cung AH<R. Qua H kẻ đường d tiếp xúc với (O). Vẽ (A;R) cắt d tại B và C sao cho H nằm giữa. Vẽ HM, HN vuông góc với OB,OC.
1) C/m OM.OB=ON.OC và MN luôn đi qua điểm cố định.
2) C/m OB.OC=2R^2
Giúp mình với mốt là mình đi thi rồi
Cho (O,R) trên (O,R) lấy hai điểm A và H sao cho AH<R. Gọi a là tiếp tuyến tại H của (O) . Trên a lấy hai điểm B và C sao cho H nằm giữa B,C và AB=AC=R Từ H lần lượt vẽ HM vuông góc với OB (M thuộc OB ) và HN vuông góc OC (N thuộc OC )
1) CM rằng MN là trung trực OA
2) Chứng minh OB.OC=2R2
3) Tìm giá trị lớn lớn nhất của diện tích tam giác OMN khi H thay đổi
( Hướng dẫn : Gọi S là điểm thuộc cung nhỏ HI. Kẻ tiếp tuyến tại S của (O) cắt BH, BI lần lượt tại R và T )
Cho đường tròn (O;R) đường kính AB. Gọi M là điểm nằm giữa A và B.Qua M vẽ dây CD vuông góc với AB,lấy điểm E đối xứng với A qua M.
1)Tứ giác ACED là hình gì ? Vì sao ?
2)GọiH và K lần lượt là hình chiếu của M trên AB và AC.Chứng minh rằng:HM/MK . CD/HK =MC/4R
3)Gọi C’ là điểm đối xứng với C qua A.Chứng minh rằng C’ nằm trên một đường tròn cố định khi M di chuyển trên đường kính AB (M khác A và B)
Cho đường tròn O bán kính R, M ở trong O, kẻ dây AB và CD vuông góc với nhau tại M . Chứng minh : Đường cao MN của tam giác AMD đi qua trung điểm I của BC
a) Cho đường tròn tâm O bán kính R. Hai dây AB và CD bằng nhau và vuông gócvới nhau tại I. Chứng minh rằng \(IA^2+IB^2+IC^2+ID^2\) không đổi.b) Trong đường tròn tâm O vẽ dây cung AD không đi qua O. Đường kính vuônggóc với OA cắt tiếp tuyến tại D của (O) tại điểm C. Chứng minh rằng phân giác của gócDCO song song với đường trung trực của AD
Cho nửa đường tròn (O;R) đường kính AB. Trên nửa mặt phẳng bờ AB có chứa nửa đường tròn vẽ tiếp tuyến Ax với nửa đường tròn, trên Ax lấy M sao cho AM>R. Từ M vẽ tiếp tuyến MC với nửa đường tròn, từ C vẽ CH vuông góc với AB,CE vuông góc với AM. Đường thẳng vuông góc với AB tại O cắt BC tại N.Đường thẳng MO cắt CE,CA,CH lần lượt tạiQ,K,P.a ) MB cắt CH tại I. Chứng minh KI song song vớiAB b) Gọi G và F lần lượt là trung điểm của AH và AE. Chứng minh PG vuông góc với QF
Cho đường tròn O bán kính R đường kính AB . trên tia đối BA lấy BC sao cho BA > BC . vẽ O' đường kính BC . gọi I là trung điểm AC . vẽ dây MN vuông góc với AC tại I , MC cắt O' tại D ( D khác C )
a, CMR : tứ giác AMCN là hình thoi
b, CM các tứ giác BDM , NIDC nội tiếp
c, Biết OI = R/3 , tính S tứ giác NIDC theo R
Cho đoạn thẳng OA = R, vẽ đường tròn (O;R). Trên đường tròn (O;R) lấy H bấy kỳ sao cho AH<R, qua H vẽ đường thẳng a tiếp xúc với đường tròn (O;R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C và AB = AC = R. Vẽ HM vuông góc với OB( M ∈ OB), vẽ HN vuông góc với OC ( N ∈ OC).
a) Chứng minh OM. OB = ON. OC và MN luôn đi qua 1 điểm cố định
b) Chứng minh \(OB.OC=2R^2\)
c) Tìm giá trị lớn nhất của diện tích tam giác OMN khi H thay đổi.