(O; \(\dfrac{AD}{2}\)) lấy M thuộc OA, N thuộc OB, OM=ON qua M và N kẻ song song dây CD//EF (C, E thuộc \(\dfrac{1}{2}\)(O))
a. CEFO là hình gì
b. Cho OM=\(\dfrac{2}{3}\)R. Góc nhọn giữa CD và OA=\(60^0\). Tính diện tích CDEF
cho dường tròn tâm O , R=13 và dây AB=24cm . trên các tia OA,OB lần lượt lấy MN sao cho OM=ON=33,8.chứng minh M,N là tiếp tuyến của đường tròn
Cho 1 nửa đường tròn (O) đường kính AB. Lấy 2 điểm M, N trên OA, OB sao cho OM = ON. Từ M, N kẻ các đường thẳng vuông góc AB, cắt (O) tại P, Q. Tứ giác MNQP là hình gì? Vì sao?
cho đường tròn tâm O bán kính R và điểm A nằm ngoài đường tròn từ A kẻ tiếp tuyến AE với đường tròn tâm (O),C,E là các tiếp điểm vẽ dây EH vuông góc OA tại M a)biết R bằng ,OM bằng 3 cm tính EH b)CM AH là tiếp tuyến của đường tròn tâm O c)đường thẳng qua O vuông góc OA cắt AH tại B vẽ tiếp tuyến BF với đường tròn tâm O (F là tiếp điểm) CM EOF thằng hàng và BF.AE=R^2
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB, AC của (O;R), (BC là các tiếp điểm).
1) Chứng minh rằng bốn điểm A,B,O,C cùng thuộc một đường tròn;
2) Lấy điểm I trên đường tròn (O;R) sao cho tia OI nằm giữa hai tia OA và OB. Qua I vẽ đường thẳng tiếp xúc với đường tròn (O;R) cắt AB,AC lần lượt tại M và N. Chứng minh MB+NC=MN;
3) Qua O vẽ đường thẳng vuông góc với OA cắt AB,AC lần lượt tại P và Q. Chứng minh rằng PM.QN=\(\dfrac{PQ^2}{4}\)
Từ điểm A nằm ngoài (O;R) vẽ các tiếp tuyến AM,AN (M,N là 2 điểm). MN cắt AO tại H. a) chứng minh 4 điểm A,M,O,N cứng thuộc đường tròn. Xác định tâm I và bán kính của đường tròn. b) chứng minh OA vuông góc MN tại H là trung điểm của MN. c) chứng minh AM2=AH.AO=OA2-R2. d) vẽ đường kính MD của (O). Chứng minh ND song song OA và 2OH=ND
Cho đường tròn (O;R) và điểm A năm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên đường thẳng d lấy điểm M khác điểm A. Qua điểm M vẽ hai tiếp tuyến ME và MF tới đường tròn (O) (E, F là tiếp điểm). EF cắt OM và OA lần lượt tại H và K
a, Chứng minh: H là trung điểm EF
b, Chứng minh: O,M,A,F cùng thuộc 1 đường tròn
c, Chứng minh:OK.OA = R2
d, Xác định vị trí điểm M trên đường thẳng d để tam giác OHK có diện tích lớn nhất
o l m . v n
Cho đoạn thẳng OA= R, vẽ đường tròn(O,R). Trên đường tròn (O,R) lấy H bất kì sao cho AH<R. Qua H vẽ đường thẳng A tiếp xúc với đường tròn (O,R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C, và AB=AC=R. Vẽ HM vương góc với OB ( M thuộc OB) và HN vuông góc với với OC ( N thuộc OC)
a) Chứng minh OM.OB=ON.OC và MN luôn đi qua một điểm cố định
b)Chứng minh: OB.OC=2R
c)Tìm giá trị lớn nhất của diện tích am giác OMN khi H thay đổi