Kẻ OK vuông góc với MN
GọiH là giao của OK và AB
=>H là trung điểm của AB
=>HA=HB=12cm
Xét ΔOKN có BH//KN
nên BH/KN=OB/ON
=>KN=31,2cm
=>\(OK=\sqrt{33.8^2-31.2^2}=13\left(cm\right)=R\)
=>K thuộc (O;R)
=>MN là tiếp tuyến của (O)
Kẻ OK vuông góc với MN
GọiH là giao của OK và AB
=>H là trung điểm của AB
=>HA=HB=12cm
Xét ΔOKN có BH//KN
nên BH/KN=OB/ON
=>KN=31,2cm
=>\(OK=\sqrt{33.8^2-31.2^2}=13\left(cm\right)=R\)
=>K thuộc (O;R)
=>MN là tiếp tuyến của (O)
Cho đường tròn tâm O bán kính R và 1 điểm A nằm ngoài đường tròn sao cho OA = 2R . Vẽ 2 tiếp tuyến AB, AC ( B, C là các tiếp điểm ) Đường thẳng OA cắt BC tại H. Cắt cung nhỏ và cung lớn BC lần lượt tại M và N.
a) Chứng minh R2 = OA . HM
b) Vẽ cát tuyến bất kì ADE. Gọi K là điểm DE. Chứng tỏ 5 điểm A, B, O, K ,C cùng thuộc 1 đường tròn. Xác định tâm và bán kính của đường tròn đó .
c) Chứng minh AM . AN = AH . AO
cho nửa đường tròn tâm O đường kính AB,trên cùng 1 nửa mặt phẳng có bờ AB chứa nửa đường tròn vẽ các tiếp tuyến Ax;By.M và N lần lượt thuộc tia Ax và By sao cho góc MON=90°,gọi I là trung điểm của MN a)CMR:AB là tiếp tuyến của đường tròn(I;IO) b)CMR:MO là tia phân giác của góc AMN c)CMR:MN là tiếp tuyến của đường tròn(O;AB)
Cho điểm A năm trên đường tròn (O;R). Từ A kẻ tiếp tuyến à và dây AB. Kẻ OM vuông góc với AB (MϵAB). Tia OM cắt à ở C
a) Chứng minh CO là đường trung trực của đoạn thẳng AB
b) Chứng minh CB là tiếp tuyến của đường tròn (O)
c) Từ O kẻ đường thẳng vuông góc với OB, đường này cắt AC ở I. đường thẳng vuông góc với OA tại O cắt BC ở E. Tứ giác OECI là hình gì?
cho đường tròn tâm O bán kính R và điểm A nằm ngoài đường tròn từ A kẻ tiếp tuyến AE với đường tròn tâm (O),C,E là các tiếp điểm vẽ dây EH vuông góc OA tại M a)biết R bằng ,OM bằng 3 cm tính EH b)CM AH là tiếp tuyến của đường tròn tâm O c)đường thẳng qua O vuông góc OA cắt AH tại B vẽ tiếp tuyến BF với đường tròn tâm O (F là tiếp điểm) CM EOF thằng hàng và BF.AE=R^2
Câu hỏi : cho (O;R) từ điểm A ngoài đường tròn sao cho OA=2R. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm) A) Tam giác ABC là tam giác vuông ? Vì sao? B) chứng minh OH×OA=R^2 C) qua A kẻ đường thẳng cắt đường tròn lần lượt tại M và N(M nằm giữa A và N), xác định vị trí của AMN để AM+AN đạt giá trị nhỏ nhất. Cảm ơn rất nhiều
cho đường tròn tâm o. từ điểm m nằm ngoài đường tròn tâm o kẻ tiếp tuyến ma của đường tròn tâm o. từ a kẻ đường thẳng vuông góc với om cắt om và đường tron tâm o lần lượt tại h và b. chứng minh bm là tiếp tuyến đường tròn tâm o. kẻ đường kính ac, mc cắt đường tròn tâm o tại d, kẻ di vuông góc với ac, di cắt ab tại g ,gọi e là trung điểm am, chứng minh c f e thẳng hàng
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho nửa đường tròn (O; R) đường kính AB. Trên cùng một mặt phẳng bờ AB chứa nửa đường tròn, kẻ hai tia tiếp tuyến Ax, By với nửa đường tròn. Lấy điểm M trên nửa đường tròn. Tiếp tuyến của nửa đường tròn tại M cắt Ax, By lần lượt tại C và D. chứng minh COD là tam giác vuông
Cho (O;R).từ điểm A nằm ngoài (O) sao cho OA=2R vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm ) kẻ dây BC vuông góc OA a) chứng minh : AC là tiếp tuyến của đường tròn(O) b)Qua O vẽ đường vuông góc với OC cắt AB tại M. Chứng minh rằng: tam giác OMA tà tam giác cân c) gọi N là giao điểm của OA với đường tròn (O) ,tia MN Cắt AC tại K .chứng minh rằng:MK là tiếp tuyến của đường tròn (O) d) tính chu vi tam giác AMK theo R