Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Diễm Phượng

Câu hỏi : cho (O;R) từ điểm A ngoài đường tròn sao cho OA=2R. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm) A) Tam giác ABC là tam giác vuông ? Vì sao? B) chứng minh OH×OA=R^2 C) qua A kẻ đường thẳng cắt đường tròn lần lượt tại M và N(M nằm giữa A và N), xác định vị trí của AMN để AM+AN đạt giá trị nhỏ nhất. Cảm ơn rất nhiều

Nguyễn Lê Phước Thịnh
20 tháng 12 2023 lúc 14:01

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC

Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

AO là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

b: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

=>\(OH\cdot OA=R^2\)

 

 


Các câu hỏi tương tự
Huỳnh như
Xem chi tiết
Nguyễn Tôn Gia Kỳ
Xem chi tiết
Trần Thị Khánh Linh
Xem chi tiết
Bùi Tiến Thành
Xem chi tiết
XiangLin Linh
Xem chi tiết
Assassin Boy
Xem chi tiết
WonMaengGun
Xem chi tiết
Thảo Anh
Xem chi tiết
Posiwantdo Ilbe
Xem chi tiết