a: Xét tứ giác OBAC có
M là trung điểm của OA
M là trung điểm của BC
Do đó: OBAC là hình bình hành
mà OB=OC
nên OBAC là hình thoi
a: Xét tứ giác OBAC có
M là trung điểm của OA
M là trung điểm của BC
Do đó: OBAC là hình bình hành
mà OB=OC
nên OBAC là hình thoi
Cho ( O;3cm), điểm A nằm bên ngoài (O) sao cho OA =5cm. Từ A kẻ tiếp tuyến AB với (O) (với B là tiếp điểm). Kẻ dây BC vuông góc với OA tại H a, Tính BH b, Tính góc BAC c, Chứng minh AC là tiếp tuyến của (O)
Cho (O, R) đường kính AB. Gọi H là trung điểm của OA. Qua H kẻ đường thẳng vuông góc
với AB cắt (O) tại hai điểm C và D .
a/ Tứ giác ACOD là hình gì? Chứng minh?
b/ Qua điểm D kẻ tiếp tuyến với đường tròn (O) cắt tia OA tại M. Chứng minh MC là tiếp tuyến của
đường tròn (O) tại C và tam giác MCD là tam giác dều.
c/ Tính chu vi và diện tích cùa MCD theo R .
d/ Gọi N là trung điểm của HB, đường thẳng kẻ qua H vuông góc với CN cắt đường thẳng CA tại E.
Chứng minh A là trung điểm cùa CE.
Cho(O,R) đường kính AB và dây AC không đi qua O. Gọi Hlaf trung điểm của AC
a) tính góc ACB và chứng minh OH//BC
b) Tiếp tuyến tại C của (O) cawts tia OH ở M. C/m: đường thẳng MA là tiếp tuyến tại A của (O)
c) kẻ CK vuông góc AB tại K. Gọi I là trung điểm của CK và đặt góc CAB=α. Chứng minh Ck=2R.sinα
d) Chứng minh M,I,B thẳng hàng
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
Cho đường tròn (O;R), dây MN khác đường kính. Hai tiếp tuyến của đường tròn (O;R) tại M và N cắt nhau tại K. Kẻ đường kính NI, kẻ MH vuông góc với NI tại H. a) chứng minh OK vuông góc với ON b) chứng minh ON là phân giác góc HMK c) gọi Q là giao điểm của KI và MH. Chứng minh QH = QM
Bài 1. Cho dường tròn (O,R) và điểm A nằm ngoài (O). Từ A kẻ tiếp tuyến AB, AC (B,C là tiếp điểm), OA cắt BC tại H
a) Chứng minh: OA là trung trực của BC
b) Qua B kẻ dường thẳng song song với OA cắt đường tròn (0) tại D, AD cắt (0) tại E. Chứng minh: AE.AD = AH.AO
c) Qua 0 kẻ OK vuông góc với EC tại K, OK cắt (0) tại I
) Từ điểm A ở ngoài (O; R) vẽ hai tiếp tuyến AB và AC đến (O; R), ( với B, C là các tiếp điểm ). Kẻ đường kính BD của (O; R). Tia AO cắt dây BC tại H. a) Chứng minh OA là trung trực của đoạn thẳng BC và OA // CD b) AD cắt (O; R) tại E (E khác D). Chứng minh BED vuông và AC2 = AE . AD c) Chứng minh: 𝑂𝐻𝐷 ̂ = 𝑂𝐷𝐴
Cho (O) đường kính AB. Lấy C thuộc (O), gọi E là trung điểm BC. Tiếp tuyến tại C của (O) cắt OE ở D.
a) Chứng minh: AACB vuông và OE vuông góc BC.
b) Chứng minh: DB là tiếp tuyến của (O).
c) Kẻ CH vuông góc AB. Chứng minh: CB.OC=OD.HC
Cho đường tròn (O, R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a, C/m OA vuông góc với BC và OH.OA= R2
b, Kẻ đường kính BD và đường thẳng CK vuông góc với BD tại K. C/m OA//CD và AC.CD=CK.AO
c, Gọi I là giao điểm của AD và CK. C/m tam giác BIK và tam giác CHK có diện tích bằng nhau