Cho (O), đường kính AB, trên tia đối của tia BA lấy điểm I bất kì, vẽ đường tròn tâm I, bán kính IA. Trong (I), kẻ đường kính EF tiếp xúc với (O) tại M; AE và AF lần lượt cắt (O) tại các điểm thứ hai là G và H. a) Chứng minh: G, O, H thẳng hàng và GH song song với EF b) Chứng minh: AM là tia phân giác của góc EAF c) Tia AM cắt (I) tại điểm K. Chứng minh: MH vuông góc với EK (tại Q) d) GM cắt FK tại T. Chứng minhTQ=MK
a: EF là tiếp tuyến của (I)
=>OM vuông góc EF
mà AI là bán kính của (O)
nên góc FAE=90 độ
=>AG là đường cao
=>G,H,O thẳng hàng
=>GH//EF
b: Xét ΔEAF có góc EAM=góc FAM
=>AM là phân giác của góc EAF
c: AM cắt (I)=K
=>IK=AI
HM//AE
KE vuông góc AE
=>MH vuông góc EK tại Q