cho tam giác đều ABC nội tiếp đường tròn (O;R).gọi (O') là đường tròn tiếp xúc trong với đường tròn (O) và tiếp xúc hai cạnh AB,AC theo thứ tự tại M và N
a, CMR 3đ O,M,N thẳng hàng
b,tính bán kính của (O') theo R
cho đường tròn tâm o bán kính R , dây BC cố định , BC< 2R . điểm A thay đổi trên cung lớn BC sao cho AB < AC . Kẻ đường kính Ad . BC cắt tiếp tuyến tại A của (o) ở M. a, IA . ED = OE .AC , DC // AE . b , Gọi G là gaio điểm của MO với đường tròn ngoại tiếp tam giác AEF . chứng minh tâm đường tròn nội tiếp tam giác ABG chạy trên một đường cố định .
Cho nửa đường tròn \(\left(O;R\right)\); đường kính AB. Trên cùng 1 nửa mặt phẳng bờ AB dựng tiếp tuyến Ax, By của nửa đường tròn. Lấy 1 điểm M trên nửa đường tròn O. Tiếp tuyến tại M của O cắt Ax, By lần lượt tại D và C. Tia AM và BM kéo dài cắt By, Ax lần lượt tại F và E.
a) Dựng \(MH\perp AB\). CM: \(AC;BD\) đi qua trung điểm I của MH
c) Chứng minh: \(EO\perp AC\)
(Làm hộ mình mỗi câu d thôi nha, các câu kia để lấy số liệu làm bài)
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1
(Làm hộ mình mỗi câu d thôi nha, các câu kia để lấy số liệu làm bài)
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1
Cho nửa đường tròn (O;R) đường kính AB. Trên nửa mặt phẳng bờ AB có chứa nửa đường tròn vẽ tiếp tuyến Ax với nửa đường tròn, trên Ax lấy M sao cho AM>R. Từ M vẽ tiếp tuyến MC với nửa đường tròn, từ C vẽ CH vuông góc với AB,CE vuông góc với AM. Đường thẳng vuông góc với AB tại O cắt BC tại N.Đường thẳng MO cắt CE,CA,CH lần lượt tạiQ,K,P.a ) MB cắt CH tại I. Chứng minh KI song song vớiAB b) Gọi G và F lần lượt là trung điểm của AH và AE. Chứng minh PG vuông góc với QF
Bài IV (3,5 điểm) Cho nửa đường tròn tâm O, bán kính R, đường kính AB. Điểm C thuộc đoạn AB (C khác B;A). Trên cùng nửa mặt phẳng bờ AB có chứa nửa (O;R). Vẽ nửa đường tròn tâm I, đường kính AC và nửa đường tròn tâm J, đường kính BC. Qua C kẻ đường thẳng vuông góc với AB cắt (O;R) tại D. DA cắt nửa đường tròn tâm I tại M, DB cắt nửa đường tròn tâm J tại N
1) Chứng minh rằng: Tứ giác MDNC là hình chữ nhật
2) Chứng minh rằng: Tứ giác AMNB nội tiếp.
3) Chứng minh rằng: OD vuông góc MN
4) Tìm vị trí của C trên AB để bán kính đường tròn ngoại tiếp tứ giác AMNB lớn nhất.
từ điểm a nằm ngoài đường tròn (o,r) vẽ các tiếp tuyến ab,ac(b,c là tiếp điểm) cát tuyến amn của (o,r) chứng minh
a,tứ giác aboc nội tiếp xác định tâm o' và bán kính của đường tròn đi qua 4 điểm a,b,o,c
b,ab^2=am.an
c,gọi i là trung điểm của mn chứng minh ia là phân giác góc bic
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1