a) Xét (O) có
OA là bán kính
CA⊥OA tại A(gt)
Do đó: CA là tiếp tuyến có A là tiếp điểm(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Xét (O) có
OB là bán kính
BD⊥BO tại B(gt)
Do đó: DB là tiếp tuyến có B là tiếp điểm(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Xét (O) có
CA là tiếp tuyến có A là tiếp điểm(cmt)
CM là tiếp tuyến có M là tiếp điểm(gt)
Do đó: CM=CA và OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm(cmt)
DM là tiếp tuyến có M là tiếp điểm(gt)
Do đó: DM=DB và OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)
Ta có: CM+MD=CD(M nằm giữa C và D)
mà CM=CA(cmt)
và MD=DB(cmt)
nên CD=AC+BD(đpcm)
Ta có: OC là tia phân giác của \(\widehat{AOM}\)(cmt)
nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)
Ta có: OD là tia phân giác của \(\widehat{MOB}\)(cmt)
nên \(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù)
mà \(\widehat{AOM}=2\cdot\widehat{MOC}\)(cmt)
và \(\widehat{MOB}=2\cdot\widehat{MOD}\)(cmt)
nên \(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)
\(\Leftrightarrow\widehat{MOC}+\widehat{MOD}=90^0\)
hay \(\widehat{COD}=90^0\)(đpcm)