Cho nửa đường tròn tâm O đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho MB=R.
Tiếp tuyến tại M của đường tròn cắt các tiếp tuyến Ax, By lần lượt tại C và D (Ax và By cùng thuộc một
nửa mặt phẳng có bờ AB chứa điểm M)
a) Chứng minh tam giác COD vuông và AC+BD=CD
b) Tính OC theo R?
c) BC cắt đường tròn tại F (F khác B). Đường thẳng qua O vuông góc với BC cắt By tại E. Chứng minh
EF là tiếp tuyến của đường tròn (O).
d) Gọi K là giao điểm của OE và BC. Chứng minh DM=DK.
Cho nửa đường tròn tâm O đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho MB=R.
Tiếp tuyến tại M của đường tròn cắt các tiếp tuyến Ax, By lần lượt tại C và D (Ax và By cùng thuộc một
nửa mặt phẳng có bờ AB chứa điểm M)
a) Chứng minh tam giác COD vuông và AC+BD=CD
b) Tính OC theo R?
c) BC cắt đường tròn tại F (F khác B). Đường thẳng qua O vuông góc với BC cắt By tại E. Chứng minh
EF là tiếp tuyến của đường tròn (O).
d) Gọi K là giao điểm của OE và BC. Chứng minh DM=DK.
Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E.
a) Chứng minh rằng AD + BE = DE
b) AC cắt DO tại M, BC cắt OE tại N. Tứ giác CMON là hình gì? Vì sao?
c/ Chứng minh: MO.MD+ON.NE không đổi
d) AN cắt CO tại điểm H. Điểm H di chuyển trên đường nào khi C di chuyển trên nửa đường tròn (O; R).
Cho nửa đường tròn (O; R) đường kính AB. Kẻ Ax và By là hai tiếp tuyến của nửa đường tròn tại A và B. Trên Ax lấy điểm C bất kì, đường thẳng qua O và vuông góc với OC cắt By tại D. a) Chứng minh AC. BD = R2 . b) Chứng minh tam giác COD đồng dạng với tam giác ODB. c) Chứng minh CD là tiếp tuyến của (O). e) Tìm vị trí của điểm C trên Ax để tứ giác ACDB có chu vi nhỏ nhất.
Cho đường tròn tâm O bán kính R đường kính AB. Trên cùng 1 nửa mặt phảng bờ AB vẽ 2 tiếp tuyến Ax và By. M là 1 điểm ở trên đường tròn sao cho tiếp tuyến tại M cắt Ax tại C , By tại D a)ABDC là hình gì? Vì sao? b)cm : góc ABM=90° c)cm: AC + BD=CD
Cho nửa đường tròn (O;R) đường kình AB, M là điểm trên nửa đường tròn, tiếp tuyến tại M cắt hai tiếp tuyến tạ A và B ở C và D a) Chứng minh: CD= AC+BD và tam giác COD vuông b) Chứng minh: AB là tiếp tuyến của đường tròn đường kính CD. Biết BM=R tính theo R diện tích tam giác ACM
Cho nửa đường tròn tâm O , bán kính R , đường kính AB . Vẽ các tiếp tuyến Ax và By với nửa đường tròn ( O ) . Ax lấy điểm C , trên By lấy điểm D sao cho góc COD bằng 90° . OC và BD kéo dài cắt nhau tại L a) C/m ∆DCI cân và AC . BD = AB Bình phần 4 b) c/m CD là tiếp tuyến của nửa đường tròn ( O ) tiếp điểm M và CD = AC + BD c) Hạ MH vuông góc với AB . Chứng minh ba đường thẳng MH ; AD ; BC đồng quy tại K d) Cm K là Trung điểm của MH
Cho nửa đường tròn tâm (O;R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường (O) (Ax, By và nửa đường trong cùng thược nửa mặt phẳng AB). Qua điểm M bất kì nằm trên nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By lần lượt tại D, E.
a) CMR: △DOE làm tam giác vuông.
b) Tính bán kính đường tròn (O) biết AD = 9cm, BE = 4cm.
c) Xác định vị trí điểm M trên nửa đường tròn (O) sao cho diện tích tứ giác ADEB là nhỏ nhất.