Sửa đề:
Chứng minh: \(\left(a_1-b_1\right)\left(a_2-b_2\right)\left(a_3-b_3\right)...\left(a_5-b_5\right)⋮2\)
Giải:
Đặt \(c_1=a_1-b_1;c_2=a_2-b_2;...;c_5=a_5-b_5\)
Xét tổng \(c_1+c_2+c_3+...+c_5\) ta có:
\(c_1+c_2+c_3+...+c_5\)
\(=\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_5-b_5\right)\)
\(=0\)
\(\Rightarrow c_1;c_2;c_3;c_4;c_5\) phải có một số chẵn
\(\Rightarrow c_1.c_2.c_3.c_4.c_5⋮2\)
Vậy \(\left(a_1-b_1\right)\left(a_2-b_2\right)\left(a_3-b_3\right)...\left(a_5-b_5\right)⋮2\) (Đpcm)