Lời giải:
Nếu $n$ chia hết cho $3$ thì $n+60$ chia hết cho $3$. Mà $n+60>3$ nên không thể là số nguyên tố (trái với giả thiết)
Nếu $n$ chia $3$ dư $2$ thì $n+10$ chia hết cho $3$. Mà $n+10>3$ nên không thể là số nguyên tố (trái giả thiết)
Nếu $n$ chia $3$ dư $1$ thì $n-10$ chia hết cho $3$. Khi đó để $n-10$ là số nguyên tố thì $n-10=3\Rightarrow n=13$. Thử thấy $n+10; n+60$ cũng đều là snt với $n=13$ nên đây là số thỏa mãn đề. Đến đây ta thay vào $n+90$ thì thấy $n+90$ cũng là snt (đpcm)