- Để A chia hết có 2 :
TH1 : n chẵn => A chia hết cho 2
TH2 n lẻ => n + 1 chẵn => A chia hết cho 2 .
- Để A chia hết cho 3 :
TH1 : n = 3k => A chia hết cho 3
TH2 : n = 3k + 1 => 2n + 1 = 6k + 3 chia hết cho 3 => A chia hết cho 3 .
TH3 : n = 3k + 2 => n + 1 = 3k + 3 chia hết cho 3 => A chia hết cho 3 .
=> A chia hết cho 2 và 3
=> A là bội của 2 và 3 .
ta có : A = n(n+1)(2n+1)
nếu n chia hết cho 2
suy ra n=2k
suy ra Achia hết cho 2
suy ra A là bội của 2
nếu n chia cho 2 dư 1
suy ra n=2k+1
suy ra n+1=2k+2chia hết cho 2
suy ra A chia hết cho 2
suy ra A là bội của 2
suy ra với n là stn thì A là bội của 2(1)
Lại có: nếu n chia hết cho 3
suy ra A chia hết cho 3
suy ra A là bội của 3
nếu n chia cho 3 dư 1
suy ra n=3k+1
suy ra 2n+1=6k+3chia hết cho 3
suy ra A chia hết cho 3
suy ra A là bội của 3
Nếu n chia cho 3 dư 2
suy ra n=3k+2
suy ra n+1=3k+3chia hết cho 3
suy ra A chia hết cho 3 suy ra A là bội của 3
suy ra n là stn thì A là bội của 3(2)
từ (1)và (2)suy ra nếu n là stn thì A là bội của 3 và 2