Cho ΔABC có trung tuyến AD, trọng tâm G. Một đường thẳng qua G cắt AB, AC tại M và N
Khẳng định nào sau đây đúng ?
A. \(\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AN}.\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{AM}.\overrightarrow{NC}\)
B. \(\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AN}.\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{AM}.\overrightarrow{NC}\)
C.\(\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{3}{2}\overrightarrow{AN}.\overrightarrow{MB}+\dfrac{3}{2}\overrightarrow{AM}.\overrightarrow{NC}\)
D. \(\overrightarrow{AM}.\overrightarrow{AN}=\overrightarrow{AN}.\overrightarrow{MB}+\overrightarrow{AM}.\overrightarrow{NC}\)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A. Gọi M,N là điểm thỏa mãn \(\overrightarrow{MB}+2\overrightarrow{MA}=\overrightarrow{0},\overrightarrow{NC}+2\overrightarrow{NA}=\overrightarrow{0}\).Điểm E thuộc BN sao cho ME vuông góc với BC. Biết rắng góc NBC bằng 45 độ
a) Hay biểu thị \(\overrightarrow{CE}\) qua \(\overrightarrow{CA}\) và \(\overrightarrow{CB}\)
b) Cho E(3;-2) và phương trình đường thẳng CM: 2x+y-9=0. Tìm tọa độ điểm C
Cho hai vecto a;b khác vecto 0 thỏa mãn \(\overrightarrow{a}.\overrightarrow{b}=\dfrac{1}{2}\left|-\overrightarrow{a}\right|\left|\overrightarrow{b}\right|\). Khi đó góc giữa hai vecto a và b là
Cho tam giác ABC vuông tại A có AB=a , BC =2a .Gọi M ,N lần lượt là trung điểm của AC , BC .
a) Tính số đó các góc của tam giác ABC .
b) Xác định các góc( \(\overrightarrow{AB},\overrightarrow{MN}\)),
(\(\overrightarrow{MN},\overrightarrow{MB}\)) , (\(\overrightarrow{AB},\overrightarrow{BC}\)) ,( \(\overrightarrow{NM},\overrightarrow{BC}\))
c) Tính tích vô hướng : \(\overrightarrow{AB}.\overrightarrow{AC},\overrightarrow{BC.}\overrightarrow{AC},\overrightarrow{MN.}\overrightarrow{BC},\overrightarrow{BN}.\overrightarrow{AC},\overrightarrow{AN.}\overrightarrow{BC}\)
cho 3 điểm A,B,C,D phân biệt. Tập hợp những điểm M mà
\(\overrightarrow{CM}.\overrightarrow{CB}=\overrightarrow{CA}.\overrightarrow{CB}\)
Cho các vecto \(\left|\overrightarrow{a}\right|=x,\left|\overrightarrow{b}\right|=y,\left|\overrightarrow{z}\right|=c\) và vecto a+b+3c=0. Tính \(A=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\)
Tìm bán kính đường tròn đi qua 3 điểm A(0;4) B(3;4) C(3;0) là
Cho A(2;5) , B(1;1), C(3;3) , một điểm E trong mặt phẳng tọa độ thỏa \(\overrightarrow{AE}=3\overrightarrow{AB}-2\overrightarrow{AC}\) . Tọa độ của E là