Xét tính đồng biến, nghịch biến của hàm số và tìm cực trị
Câu 4. Cho hàm số \(y = x^4 - 2x^2 -3\). Mệnh đề nào sau đây là mệnh đề đúng?
A. Hàm số nghịch biến trên \((-1; 0).\)
B. Hàm số đồng biến trên \((-\infty;0).\)
C. Hàm số nghịch biến trên \((-1; 1).\)
D. Hàm số nghịch biến trên \((0; +\infty).\)
Tìm tất cả các giá trị thực của m để hàm số y = mx+6/2x+m+1 nghịch biến trên khoảng (-1;1)
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng √2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng \(\sqrt{2}\) lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
tìm m để hàm số \(=-x^4+\left(2m-3\right)x^2+m\) nghịch biến trên (1;3)
tìm m để hàm số \(y=\dfrac{x^3}{3}-\dfrac{mx^2}{2}+2mx-3m+4\) nghịch biến trên một đoạn có độ dài bằng 3.
tìm m để hàm số \(y=x^3+3x^2+\left(m+1\right)x+4m\) nghịch biến trên (-1;1)
tìm m để hàm số \(y=x^4-2\left(m-1\right)x^2+m-2\) đồng biến trên (1;3)
(theo 2 cách )