Ta có : =
=
=
=> ++ = (++) = =
=> ++ = (1)
Gọi G là trong tâm của tam giác MPR, ta có:
+ + = (2)
Mặt khác : = +
= +
= +
=> ++ =(++)+ ++ (3)
Từ (1),(2), (3) suy ra: ++ =
Vậy G là trọng tâm của tam giác NQS
Ta có : =
=
=
=> ++ = (++) = =
=> ++ = (1)
Gọi G là trong tâm của tam giác MPR, ta có:
+ + = (2)
Mặt khác : = +
= +
= +
=> ++ =(++)+ ++ (3)
Từ (1),(2), (3) suy ra: ++ =
Vậy G là trọng tâm của tam giác NQS
Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FE. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm ?
Cho tứ giác ABCD. Các điểm M, N, P và Q lần lượt là trung điểm của AB, BC, CD và DA. Chứng minh rằng hai tam giác ANP và CMQ có cùng trọng tâm ?
Cho lục giác đều ABCDEF. Chứng minh rằng hai tam giác ACE và BDF có cùng trọng tâm.
Bài 1: Cho lục giác ABCDEF. Gọi P, Q, R, S, T, U lần lượt là trung điểm AB, BC, CD, DE, EF, FA. Cmr: 2 tam giác PRT, QSD cùng trọng tâm.
Bài 2: Cho tứ giác ABCD. Cmr:
a, \(\exists\) duy nhất \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=0\) ( G là trọng tâm tứ giác)
b, Trọng tâm G là trung điểm mỗi đoạn nối trung điểm 2 cạnh đối tứ giác và nó cũng là trung điểm của đường thẳng nối trung điểm của hai đường chéo tứ giác.
c, \(\overrightarrow{AG}=3\overrightarrow{GA_1}\)
Các bạn giúp mình với ! Cảm ơn ạ !
Gọi M và N lần lượt là trung điểm các cạnh AB và CD của tứ giác ABCD. Chứng minh rằng :
\(2\overrightarrow{MN}=\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{AD}\)
Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng vecto md+me+mf=3/2mo( k dùng phương pháp kẻ song song ạ)
Cho tam giác ABC. Gọi M, N, E lần lượt là trung điểm của BC, CA và AB. Chứng minh các vecto AM+BN+CE=0
Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đền BC, AC, AB. Chứng minh rằng :
\(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\dfrac{3}{2}\overrightarrow{MO}\)
Cho tứ giác ABCD. Gọi M, N, J lần lượt là trung điểm của các cạnh AD, BC, AC và BD. Chứng minh rằng : vecto MA +vecto IJ = vecto NB