Lời giải:
Gọi chiều cao của hình lăng trụ là \(AA'=h\)
Vì là hình lăng trụ đều nên các mặt bên đều là hình chữ nhật (có các cạnh vuông góc với nhau)
Do đó áp dụng định lý Pitago:
\(A'B=\sqrt{BB'^2+A'B'}=\sqrt{16+h^2}\)
\(A'C=\sqrt{16+h^2}\)
\(BC=4\)
Tam giác $A'BC$ cân tại $A$. Từ $A$ kẻ đường cao $AH$ xuống $BC$
Pitago \(\Rightarrow AH=\sqrt{A'B^2-BH^2}=\sqrt{16+h^2-2^2}=\sqrt{12+h^2}\)
\(S_{A'BC}=\frac{AH.BC}{2}=\frac{\sqrt{12+h^2}.4}{2}=8\rightarrow h=2\)
Do đó \(V_{ABC.A'B'C'}=S_{ABC}.h=2.\frac{\sqrt{3}}{4}.4^2=8\sqrt{3}\)