Theo bài ra , ta có :
\(2x^2-2xy+y^2+4x+4=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x+4\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}\left(x-y\right)^2=0\\\left(x+4\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x-y=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=y\\x=-4\end{matrix}\right.\)
\(\Rightarrow x=y=-4\)
Thay x = y = -4 vào A ta được
\(A=x^4+y^4\)
\(\Rightarrow A=\left(-4\right)^4+\left(-4\right)^4=2\times\left(-4\right)^4=512\)
Vậy A = 512
Chúc bạn hok tốt =))