: Cho hình thang ABCD (AB < CD và AB // CD). Vẽ qua A đường thẳng AK song song với BC (K DC) và AK cắt BD tại E, vẽ qua B đường thẳng BI song song với AD (I CD) cắt AC tại F.
a) Chứng minh rằng: EF // AB
b) Chứng minh rằng: AB2 = CD.EF
Cho hình thang ABCD (AB // CD) có O là giao điểm của hai đường chéo AC và BD. Qua A, kẻ đường thẳng song song với BC cắt BD tại E. Qua B, kẻ đường thẳng song song với AD cắt AC tại F.
a) Chứng minh: EF // CD.
b) Chứng minh: AB2 = CD . EF
Bài1: Cho tam giác ABC, DE//BC, D thuộc AB, E thuộc AC. Trên tia đối tia CA lấy F sao cho CF= BD. DF cắt BC tại M. a) MD/MF=ACIAB b) Cho BC=8;BD=5;DE=3. Chứng minh tam giác ABC cân.
Bài2: Cho hình thang ABCD, AB//CD, M là trung điểm của CD, AM cắt BD tại I, BM cắt AC tại K a) IK//AB b) IK cắt AD và BC tại E,F. Chứng minh El=KF c) AC cắt BD tại O. Qua O vẽ đường thắng // AB cắt AD, BC tại M,N. Chứng minhh MO=NO và 2/MN= 1/AB+1/CD
Bài3 (HSG) Cho tam giác ABC đường thẳng qua A cắt BC, CA, AB tại M,N,P. chứng minh MB/MC. NC/NA. PA/PB=1
Cho tứ giác ABCD. Đường thẳng qua A và // với BC cắt BD tại E. Đường thẳng qua B và // với AD cắt AC tại F. Chứng minh EF//CD
Cho hình thang ABCD( AB//CD; AB<CD) . Hai đường chéo cắt
nhau tại O.
a) CMR: OA.OD=OB.OC
b) Đường thẳng đi qua O mà song song với CD cắt AD và BC lần lượt
tại M và N. CMR: OM=ON.
c) AD cắt BC tại E. EO cắt AB và CD lần lượt tại P và Q. CMR: P là
trung điểm của AB; Q là trung điểm của CD;
mg giúp mình câu c với
Bài 1: Cho hình thang ABCD ( AB//CD) . O là giao của 2 đường chéo , qua O kể đường thẳng // với 2 đáy cắt AD tại M, cắt BC tại N. CMR : O là trung điểm của MN
Bài 2: Cho \(\bigtriangleup{ABC}\) có S=120 cm2 . Đường cao AH , trung tuyến AM , gọi G là trọng tâm của \(\bigtriangleup{ABC}\). Đường thẳng đi qua G//BC cắt AB, AH, AC lần lượt tại E, I, F
a) Tính \(\dfrac{EF}{BC}\)và \(\dfrac{AI}{AH}\)
b) SAEF=?
Bài 3: Cho \(\diamond{ABCD}\) , đường thẳng đi qua A// với BC cắt BD tại E ; đường thẳng đi qua B // với AD cắt AC tại G
a) CM: EG//CD
b) Giả sử AB//CD . CM: AB2=CD.EG
Cho hình thang ABCD có đáy nhỏ CD. Từ D vẽ đường thẳng song song với BC, cắt AC tại M và AB tại K. Từ C vẽ đường thẳng song song với AD, cắt AB tại F, qua F ta lại vẽ dường thẳng song song với AC, cắt BC tại P. CMR:
a)MP song song AB
b) Ba đường thẳng MP, CF, DB đồng quy
Cho tam giác ABC . E là trung điểm AB. Trên nửa mặt phẳng bờ BC có chứa A vẽ tia Cx song song AB, qua E vé đường thẳng song song với BC cắt AC tại D và cắt Cx tại F, BF cắt AC tại I.
Chứng minh \(\frac{1}{IC}\)=\(\frac{1}{CD}\)+\(\frac{1}{CA}\)Cho hình thang ABCD có đáy nhỏ CD. Từ D vẽ đường thẳng // với BC, cắt AC tại M, AB tại K. Từ C vẽ đường thẳng // với AD, cắt AB tại F. Từ F lại vẽ đường thẳng // với AC, cắt BC tại P. CMR:
a) MP//AB
b) 3 đường thẳng MP, CF, BD đồng quy