Cho tam giác ABC , vẽ Cx//AB . Từ trung điểm E của AB vẽ đường thẳng song song BC cắt AC tại D , Cx ở F . Đoạn thẳng BF cắt AC ở I.
a)Chứng minh : IC2 = IA . AD
b)Tính \(\dfrac{ID}{IC}\)
Cho DABC vuông tại A, đường phân giác của góc A cắt BC tại D biết AB = 6 cm , AC = 8 cm . a) Tính BC, BD, DC b) Từ trung điểm M của BC kẻ 1 đường thẳng song song với AD cắt cạnh AC tại F và cắt tia đối của tia AB tại E .Chứng minh: . c) Chứng minh: AE = AF
Cho tam giác ABC có O nằm trong tam giác. Đường thẳng qua O song song với BC cắt AB,AC tại M,N. Đường thẳng qua O song song với AB cắt AC, BC tại F, E. Đường thẳng qua O song song với AC cắt AB, BC tại I, K.
Chứng minh: \(\dfrac{AI}{AB}+\dfrac{BE}{BC}+\dfrac{CN}{AC}=1\)
Cho tam giác ABC có AB = 18 cm, AC = 12 cm, BC = 9 cm. Trên tia đối của tia CB lấy điểm D sao cho CD = 3 cm. Qua D kẻ đường thẳng song song với AB cắt tia AC tại E. Gọi F là giao điểm của AD và BE. Tính: a) Độ dài CE, DE
: Cho hình thang ABCD (AB < CD và AB // CD). Vẽ qua A đường thẳng AK song song với BC (K DC) và AK cắt BD tại E, vẽ qua B đường thẳng BI song song với AD (I CD) cắt AC tại F.
a) Chứng minh rằng: EF // AB
b) Chứng minh rằng: AB2 = CD.EF
Cho tam giác ABC, lấy điểm M thuộc BC và N thuộc AM. Gọi I,K lần lượt là trung điểm của BN và CN. Tia MI cắt AB tại E, tia MK cắt AC tại F. Chứng minh EF song song BC
Cho hình thang ABCD (AB // CD) có O là giao điểm của hai đường chéo AC và BD. Qua A, kẻ đường thẳng song song với BC cắt BD tại E. Qua B, kẻ đường thẳng song song với AD cắt AC tại F.
a) Chứng minh: EF // CD.
b) Chứng minh: AB2 = CD . EF
cho tam giác ABC có AM là đường trung tuyến, I thuộc AM, BI cắt AC tại E, CI cắt AB tại F. Chứng minh FE song song BC( gợi í: đường thẳng A song song BC)
Có ai giải hộ vớicho TAM GIÁC abcd có am là trung tuyến và điểm e thuộc đoạn thẳng mc. qua e kẻ đường thẳng song song với ac, cắt ab ở d và cắt am ở k. qua e kẻ đường thảng song song với ab, cắt ac ở f. chứng minh cf=dk