cho f(x) là 1 đa thức với hệ số nguyên. BIết f(1).f(2) = 2013, chứng minh phương trình f(x) =0 không có nghiệm nguyên
1)Cho hàm số y=f(x)=3x. Chứng minh hàm số đồng biến trên R
2)Cho hàm số y=f(x)=2/3x+5. Chứng minh hàm số đồng biến trên R
3)Cho hàm số y=f(x)=4-2/5x. Chứng minh hàm số nghịch biến trên R
Cho f(x) =ax2+bx+2015 có các hệ số a,b hữu tỉ và f(1+√2)=2016. Tìn a,b và tính f(1-√2)
Cho f(x) =\(2x^5+ax^4+bx^3+cx^2+dx+e\) và g(x) =\(x^2+x+2014\) là những đa thức với hệ số nguyên. Biết rằng phương trình f(x)=0 có 5 nghiệm phân biệt ; g(x) =0 không có nghiệm. Chứng minh \(8\sqrt[3]{f\left(2014\right)}>1\)
cho \(f\left(x\right)=x^2+bx+c\)
Biết: \(\left(b+1\right)^2>4\left(b+c+1\right)\)
Chứng minh: phương trình \(f\left(f\left(x\right)\right)=x\) có 4 nghiệm phân biệt
Cho f(x)=ax2+bx+c (a≠0). Biết rằng phương trình f(x)=x vô nghiệm. CMR phương trình sau cũng vô nghiệm a.f2(x)+b.f(x)+c=x
\(\left\{{}\begin{matrix}2mx-\left(m+1\right)y=m-n\\\left(m+2\right)x+3ny=3m-3\end{matrix}\right.\)
cho biểu thức f(x) = ax2 + bx + 4. xác định các hệ số a và b biết rằng f(2) = 6, f(-1) = 0
giúp mình với ạ, mình cảm ơn trc ạ!
Cho f(x) là đa thức với hệ số nguyên .Biết f(2017).f(2018)=2019. Chứng minh phương trình f(x)=0 không có nghiệm
Gíup mình câu này với. Mình cảm ơn nhiều
Cho đa thức \(f\left(x\right)=ax^3+\left(a+b\right)x^2+\left(2+b\right)x+1\)
Tìm a và b biết \(f\left(x\right)⋮\left(x-1\right)\left(x+2\right)\)