Cho a,b,c là các số nguyên.Các đa thức f(x) = ax2+bx+c và g(x) = (c-b)x2 + (c – a)x + (a+b). Chứng minh rằng 2 phương trình này có nghiệm chung khi a + b +2c chia hết cho 3
Giúp mình với ạ.Mk cảm ơn nhiều
Cho f(x) =\(2x^5+ax^4+bx^3+cx^2+dx+e\) và g(x) =\(x^2+x+2014\) là những đa thức với hệ số nguyên. Biết rằng phương trình f(x)=0 có 5 nghiệm phân biệt ; g(x) =0 không có nghiệm. Chứng minh \(8\sqrt[3]{f\left(2014\right)}>1\)
1. Cho hai phương trình: \(x^2-\left(m+2\right)x+3m-1=0\)và \(x^2-\left(2m+3\right)x+3m+3=0\)
Tìm m để hai phương trình có nghiệm chung
2. Cho \(f\left(x\right)=x^2+bx+c\).Biết rằng \(\left(b+1\right)^2>4\left(b+c+1\right)\). Chứng minh phương trình
\(f\left[f\left(x\right)\right]=x\)có 4 nghiệm phân biệt
1) tìm m để hệ phương trình sau vô nghiệm {x-y=1;mx+y=m-2
1) tìm m để hệ phương trình sau vô nghiệm {x-y=1;mx+y=m-2
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
Cho a,b,c (c≠0) các số đôi một khác nhau, biết : \(\left\{{}\begin{matrix}x^2+ax+bx=0\\x^2+bx+ax=0\end{matrix}\right.\) có ít nhất 1 nghiệm chung
a)Tìm các nghiệm còn lại của 2 phương trình
b) CMR: các nghiệm còn lại của 2 phương trình là nghiệm của phương trình \(x^2+cx+ab=0_{ }\)
1) tìm m để các hệ phương trình sau vô số nghiệm a){4x-y=3;mx+y=-3} , b){ x+2y=m;3x+6y=12
1) tìm m để các hệ phương trình sau vô số nghiệm a){4x-y=3;mx+y=-3} , b){ x+2y=m;3x+6y=12