=>x=3m-my và m(3m-my)-y=m^2-2
=>x=3m-my và 3m^2-m^2y-y=m^2-2
=>x=3m-my và 3m^2-y(m^2+1)=m^2-2
=>x=3m-my và y(m^2+1)=3m^2-m^2+2=2m^2+2
=>y=2 và x=3m-2m=m
x^2-y=2x+1
=>m^2-2=2m+1
=>m^2-2m-3=0
=>m=3 hoặc m=-1
=>x=3m-my và m(3m-my)-y=m^2-2
=>x=3m-my và 3m^2-m^2y-y=m^2-2
=>x=3m-my và 3m^2-y(m^2+1)=m^2-2
=>x=3m-my và y(m^2+1)=3m^2-m^2+2=2m^2+2
=>y=2 và x=3m-2m=m
x^2-y=2x+1
=>m^2-2=2m+1
=>m^2-2m-3=0
=>m=3 hoặc m=-1
Cho HPT: \(\left\{{}\begin{matrix}x-2y=4m-5\\2x+y=3m\end{matrix}\right.\). Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn: \(\dfrac{2}{x}-\dfrac{1}{y}=-1\)
Cho HPT: \(\left\{{}\begin{matrix}x-2y=4m-5\\2x+y=3m\end{matrix}\right.\). Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn: \(\dfrac{2}{x}-\dfrac{1}{y}=-1\)
Cho hệ pt : \(\left\{{}\begin{matrix}mx+3y=4\\2x-my=-3\end{matrix}\right.\)
a) Tìm m để HPT có vô số nghiệm
b) Với giá trị nào của m thì nghiệm của HPT thỏa mãn x<0 và y>0
Cho HPT: \(\left\{{}\begin{matrix}x-my=0\\mx-y=m+1\end{matrix}\right.\). Tìm m để HPT có nghiệm (x;y)=(2;3)
Cho HPT: \(\left\{{}\begin{matrix}x-my=0\\mx-y=m+1\end{matrix}\right.\). Tìm m để HPT có nghiệm (x;y)=(2;3)
Cho hệ phương trình :\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\) (m là tham số)
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y < 0
cho hpt:\(\left\{{}\begin{matrix}2x-y=m-1\\3x+y=4m+1\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(2x^2-3y=2\)
giúp mk với mk cần gấp lắm
1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
cho hpt \(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\) . Tìm m để hệ có nghiệm (x,y) thỏa mãn \(2x+y+\frac{38}{m^2-4}=3\)