a)
Trong tứ giác ANCF , có :
FA = CN ( gt )
FA // CN ( ABCD là hv )
=> ANCF là hbh ( DHNB )
a)
Trong tứ giác ANCF , có :
FA = CN ( gt )
FA // CN ( ABCD là hv )
=> ANCF là hbh ( DHNB )
Cho tam giác ABCvuông tại A có N,M,E lần lượt là trun điểm của AB,AC,BC trên tia đối của tia MB lấy điểm F sao cho MF=MB.
a/ Chứng minh tứ giác ABCF là hình bình hành.
b/ Trên đoạn AF lấy điểm D sao cho AD=CE. Chứng minh tứ giác AECD là hình thoi.
c/ Qua B vẽ đường thẳng vuông góc với BC, cắt đường thẳng CA tại I. chứng minh IN vuông góc với BM
. Cho ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC.
⦁ Chứng minh: Tứ giác MNCB là hình thang, tứ giác BMNP là hình bình hành.
⦁ Gọi O là trung điểm của MN. Chứng minh: 3 điểm A, O, P thẳng hàng.
⦁ Trên tia đối của tia NP lấy điểm F sao cho NF = NP. Trên tia đối của tia MP lấy điểm E sao cho ME = MP. Chứng minh: E đối xứng với F qua A.
⦁ ABC cần thêm điều kiện gì để BE + CF = BC. Chứng minh.
Cho hình chữ nhật ABCD. Kẻ AH vuông góc với BD tại H. Trên các đoạn AH, DH, BC lần lượt lấy các điểm M, N, K sao cho HM/HA=2/3,HN/HD=2/3, BK/BC=2/3 Chứng minh rằng: a) MN song song với AD b) Tứ giác MNKB là hình bình hành.
Cho AABC vuông tại A, điểm M là trung điểm của BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC a) Chứng minh: tứ giác ADME là hình chữ nhật. b) Lấy điểm K đối xứng với M qua D. Tứ giác AEDK là hình gì? Vì sao? c) Chứng minh: tứ giác AMBK là hình thoi. d) Gọi I là điểm đối xứng với M qua E. Chứng minh: K đối xứng với I qua A.
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc AB, DF vuông góc AC
a) Chứng minh DA = DF
b) Chứng minh tứ giác AHEF là hình bình hành và tứ giác AHBD là hình thoi
c) Trên tia đối của tia FD lấy I sao cho FI = FD. Chứng minh I đối xứng với H qua A
Cho bình bình hành ABCD có AB > BC. Đường phân giác góc D cắt AB tại M, đường phân giác góc B cắt CD tại N.
a) Chứng minh AM = CN.
b) Chứng minh tứ giác DMBN là hình bình hành.
c) Gọi H, K lần lượt là hình chiếu của M và N trên BN và DM. Chứng minh hai đoạn thẳng AC và MN cắt nhau tại trung điểm mỗi đường.
Bài 5. Cho tam giác ABC nhọn (AB<AC). Trên cạnh AB, AC lấy các điểm D và E sao cho BD =
CE. Gọi M, N, P, Q là trung điểm các cạnh BC,CD,DE,BE.
1) Chứng minh tứ giác MNPQ là hình thoi.
2) Đường thẳng MP cắt cạnh AC tại F.Chứng minh AB+AF = CF và MP song song với phân
giác của góc BAC
3) Đường thẳng NQ cắt AB, AC tại H,K. Chứng minh tam giác AHK cân tại A
giúp câu bc vs ạ
Cho tam giác ABC( AB < AC). Gọi M,N lần lượt là trung điểm của các cạnh AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Cho MN = 3,5 cm. Tính độ dài đoạn thẳng BC.
c) Gọi E là trung điểm của BC. Chứng minh tứ giác MNCE là hình bình hành.