a) Xét \(\Delta BHP\) và \(\Delta CHB\) có :
\(\widehat{BHP}=\widehat{CHB}=90^o;\widehat{PBH}=\widehat{BCH}\) ( cùng phụ với \(\widehat{BPC}\) )
\(\Rightarrow\) \(\Delta BHP\) ~ \(\Delta CHB\)
\(\Rightarrow\) \(\frac{BH}{CH}=\frac{BP}{CB}\) mà BP = BQ ; BC = CD
\(\Rightarrow\) \(\frac{BH}{CH}=\frac{BQ}{CD}\)
Xét \(\Delta BQH\) và \(\Delta CDH\)có :
\(\frac{BH}{CH}=\frac{BQ}{CD}\) ; \(\widehat{HBQ}=\widehat{HCD}\)( cùng phụ với \(\widehat{HCB}\) )
\(\Rightarrow\) \(\Delta BQH\) ~ \(\Delta CDH\)
b) Vì \(\Delta BQH\sim\Delta CDH\)
\(\Rightarrow\widehat{BHQ}=\widehat{CHD}\) mà \(\widehat{BHQ}+\widehat{QHC}=90^o\Rightarrow\widehat{CHD}+\widehat{QHC}=90^ohay\widehat{DHQ}=90^o\)