Hình học lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đức Thịnh

Cho hình vuông ABCD, điểm E thuộc CD. Tia qhaan giác của góc ABE cắt AD ở K. Chứng minh: AK+CE=BE

Linh Nguyễn
7 tháng 1 2017 lúc 20:14

Trên tia đối của AD lấy N sao cho AN = CE
Ta có:
Δ BCE = Δ BAN (2 cạnh góc vuông = nhau)
=> CBE= ABN (1)
BK là phân giác của ABE nên:
KBE = KBA (2)
(1) + (2) được:
CBE + KBE = ABN + KBA
=> CBK = KBN(3)
mà: CBK= BKN(4) ( so le trong)
(3) và (4) => BKN = KBN => BNK là tam giác cân tại N
=> NB = NK
=> NB = AN + AK = CE + AK (3)
do: Δ BCE = Δ BAN => BE = NB (4)
(5) và (6) => CE + AK = BE


Các câu hỏi tương tự
Minh Huy Hô
Xem chi tiết
Văn Thị Quỳnh Anh
Xem chi tiết
Chu Ngọc Ngân Giang
Xem chi tiết
Duyên Nấm Lùn
Xem chi tiết
Âu Dương Linh Nguyệt
Xem chi tiết
Lê Vên Tê
Xem chi tiết
151 122
Xem chi tiết
Trần tú Anh
Xem chi tiết
Đỗ Đại Phong
Xem chi tiết