Hạ CH vuông góc PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
=> tg vuông BCM = tg vuông DCQ ( vì BC = DC = 1; BM = QD) => CM = CQ (2)
Từ (1) và (2) => tg CPM = tg CPQ ( vì có CP chung; PM = PQ; CM = CQ) => ^CPH = ^CPB => tg vuông CPH = tg vuông CPB => ^PCH = ^PCB (3) và CH = CB = 1; PH = PB => QH = BM ( vì PQ = PM) => tg vuông CQH = tg vuông BMC = tg vuông DCQ => ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ => 2^PCQ = 90o => ^PCQ = 45o