Giả sử \(BH\perp AD\)
Gọi \(O=AC\cap BD\)
Có \(S_{ABCD}=\dfrac{1}{2}AC.BD=BH.AD\)
\(\Leftrightarrow\left\{{}\begin{matrix}AC.BD=2S_{ABCD}\\BH=\dfrac{S_{ABCD}}{AD}\end{matrix}\right.\)
Có \(\dfrac{1}{AC^2}+\dfrac{1}{BD^2}=\dfrac{AC^2+BD^2}{AC^2.BD^2}=\dfrac{4\left(OA^2+OD^2\right)}{\left(2S_{ABCD}\right)^2}\)\(=\dfrac{4AD^2}{4S_{ABCD}}=\dfrac{1}{BH^2}\)
Vậy \(\dfrac{1}{BH^2}=\dfrac{1}{AC^2}+\dfrac{1}{BD^2}\)